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SUMMARY

A higher-order discontinuous enrichment method (DEM) with Lagrange multipliers is proposed for the
efficient finite element solution on unstructured meshes of the advection–diffusion equation in the high
Péclet number regime. Following the basic DEM methodology, the usual Galerkin polynomial approxi-
mation is enriched with free-space solutions of the governing homogeneous partial differential equation
(PDE). In this case, these are exponential functions that exhibit a steep gradient in a specific flow direc-
tion. Exponential Lagrange multipliers are introduced at the element interfaces to weakly enforce the
continuity of the solution. The construction of several higher-order DEM elements fitting this paradigm is
discussed in detail. Numerical tests performed for several two-dimensional benchmark problems demon-
strate their computational superiority over stabilized Galerkin counterparts, especially for high Péclet
numbers. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The discontinuous enrichment method (DEM) was first proposed and developed in the context
of the Helmholtz equation [1–3]. It was subsequently extended in [4–6] to the more general
context of elastic wave propagation in fluid, solid, and fluid–solid multi-media. DEMs for
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HIGH PÉCLET ADVECTION–DIFFUSION PROBLEMS 605

the finite element solution of the one-dimensional (1D) advection–diffusion equation, two-
dimensional (2D) advection–diffusion equation, and the Stokes equation were also formulated in
[1, 7, 8].

DEM has shown tremendous potential for solving boundary value problems (BVPs) where the
solutions are characterized by rapid oscillations or large gradients. These are problems for which
the standard Galerkin finite element method (FEM) does not guarantee a reasonable performance
at an arbitrary mesh resolution. It is therefore inefficient and sometimes simply unfeasible. The
advection–diffusion equation, often adopted as the scalar model for the linearized Navier–Stokes
equations, belongs to this family of challenging problems. Indeed, in typical applications, the
magnitude of the diffusion coefficient in this equation is very small compared with that of the
advection coefficient—that is, the Péclet number (Pe), defined as the ratio of the advection and
diffusion coefficients, is high. It is well-known that in this case, the solution of an advection–
diffusion BVP displays sharp boundary layers. More specifically, the velocity profile rises rapidly
within the thin, viscous boundary layer to the essentially constant free-stream velocity away from
the wall or surface boundary. For such problems, spurious oscillations pollute the standard Galerkin
FEM solutions, unless the boundary layer is resolved using a very fine mesh.

DEM can be characterized as a discontinuous Galerkin method (DGM) with Lagrange multi-
pliers. Unlike the classical stabilized finite element methods that are often advocated for the finite
element solution of advection–diffusion problems in the high Péclet regime, e.g. the streamline
upwind Petrov–Galerkin (SUPG) method [9–12], adaptive stabilized finite element methods [13],
Galerkin least-squares (GLS) method [14, 15], and the unusual stabilized finite element method
(USFEM) [16, 17], the main idea of DEM is to enrich the standard piecewise polynomial approx-
imations by non-conforming and non-polynomial basis functions that are related to the partial
differential equation (PDE) to be solved. In DEM, these functions are chosen as the free-space
solutions of the homogeneous constant-coefficient counterpart of the governing PDE. For many
problems, they can be obtained in analytical form using standard techniques such as separation of
variables. Unlike in the original partition-of-unity method (PUM) [18, 19], and other partition-of-
unity-based methods such as those developed for modeling crack growth [20–22], the enrichment
in DEM is performed in an additive rather than multiplicative manner. Unlike in residual free
bubbles (RFB) [23–25], this enrichment is not constrained to vanish at the element boundaries
and therefore is more effective at capturing an oscillatory or rapidly varying solution in the entire
computational domain. Unlike in both PUM and RFB, it leads to a discontinuous rather than
continuous approximation in which the enrichment degrees of freedom (dofs) can be eliminated
at the element level by static condensation. This reduces computational complexity and results
in a system matrix that is better conditioned than those arising from related methods such as
PUM. Finally, unlike in classical discontinuous Galerkin methods (DGMs) [26–29] and other
non-conforming FEMs with non-standard approximation [30, 31] in DEM, continuity of the solu-
tion across element boundaries is enforced weakly using Lagrange multipliers.

DEM has proven to be a very competitive method for acoustic scattering [2, 3], wave propagation
in elastic media [5], and fluid–structure interaction [4] problems governed by the Helmholtz
equation, Navier’s equations, and the coupling of these equations, respectively. For example, it was
shown in [3] that the discretization by three-dimensional (3D) hexahedral DEM elements of acoustic
scattering problems in the medium frequency regime produces a solution of the same accuracy
as that delivered by a standard high-order polynomial Galerkin approximation of comparable
convergence order using four to eight times fewer dofs, and most importantly, up to 60 times
less CPU time [3]. Similarly, impressive results were reported for DEM in [4] and [5, 6] for the
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solution of medium-frequency wave propagation problems in elastic media, and multi-scale wave
propagation problems in multi-fluid and fluid–solid media, respectively.

In [7], a DEM was developed for the finite element solution of the two-dimensional (2D)
advection–diffusion equation on domains discretized by uniform meshes. An enrichment basis
consisting of exponential functions, each exhibiting a sharp gradient in some flow direction �i ,
was derived. Two low-order rectangular elements, denoted by R−4−1 and R−5−1+, each
with a single Lagrange multiplier dof per edge, were proposed for uniform discretizations of the
computational domain. The approximation space of the enrichment-only DEM element R−4−1
(also referred to in this case as a DGM element) contains four exponential enrichment functions and
no polynomial field. The approximation space of the genuine DEM element R−5−1+ contains
five exponential enrichment functions and the polynomial field of the standard Galerkin bilinear
quadrilateral element Q1. Both elements were shown in [7] to outperform standard Galerkin and
stabilized Galerkin finite elements of comparable complexity and comparable order of convergence
by a large margin. For non-trivial benchmark problems, they were shown to deliver numerical
solutions with relative errors that were at least two, and in some cases many, orders of magnitude
lower than those associated with the standard Galerkin solutions.

In this paper, the focus is kept on the 2D case, and the DEM presented in [7] is extended
to higher-order elements and unstructured meshes. This extension features a general formulation
of the Lagrange multiplier approximation that is applicable to any straight-edge element. Also,
a special class of variant DEM elements labeled ‘advection-limited’ elements is presented for
handling problems where Pe>103.

To this effect, the remainder of this paper is organized as follows. In Section 2, the hybrid
variational formulation of DEM is reviewed in the context of the 2D advection–diffusion equation.
The exponential enrichment functions constituting the approximation space VE are derived in
Section 3. Section 4 discusses the approximation of the Lagrange multiplier field on an arbitrarily
oriented edge in a mesh with straight-edged elements. Section 5 outlines a general procedure for
designing a DGM or DEM element for 2D advection–diffusion problems. Several new, higher-order
quadrilateral DGM and DEM elements are described in Section 6. The computational properties
of these elements are summarized in Section 7, and their performance is assessed for several
benchmark problems in Section 8. Finally, conclusions are offered in Section 9.

2. FORMULATION OF DEM FOR A 2D ADVECTION–DIFFUSION BVP

Let�⊂R2 be an open bounded domain with connected, Lipschitz continuous boundary �. Consider
the following all-Dirichlet BVP for the advection–diffusion equation in � in its strong form (S)

(S) :

⎧⎪⎪⎨
⎪⎪⎩
Find u∈H1(�) such that

Lu≡a ·∇u−�u= f in �

u=g on �

(1)

Here, H1(�) is the usual Sobolev space, g :�→R is a function of Dirichlet data, f :�→R2 is a
source term, and aT≡(a1 a2) is the vector of advection-coefficients, assumed in this paper to be
constant. The advection-coefficients define the advection direction whose angle with the x-axis is
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Figure 1. Decomposition of domain � into elements �e.

denoted in this paper by � and that satisfies

a1=|a|cos�, a2=|a|sin� (2)

Associated with the advection–diffusion equation (1) is a dimensionless parameter known as the
Péclet number (Pe) defined by

Pe≡ rate of advection

rate of diffusion
= l�|a|= Re ·

{
Pr (thermal diffusion)
Sc (mass diffusion)

(3)

where Re, Pr and Sc are the Reynolds, Prandtl and Schmidt numbers, respectively, and l� is a
characteristic length scale of the domain �. When � is a unit square or unit circle, this characteristic
length is naturally chosen as l� ≡1, so that Pe=|a|. Partition � into nel disjoint element domains
�e, each with a boundary �e≡��e (Figure 1), so that

�=
nel⋃
e=1

�e with
nel⋂
e=1

�e=∅ (4)

The unions of element interiors and element boundaries are denoted by �̃ and �̃, respectively, and
denoted by

�̃=
nel⋃
e=1

�e, �̃=
nel⋃
e=1

�e (5)

The set of element interfaces (or interior element boundaries) is denoted by

�int= �̃\� (6)

and the intersection between two adjacent element boundaries �e and �e′
is denoted by

�e,e′ =�e∩�e′
(7)
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608 C. FARHAT, I. KALASHNIKOVA AND R. TEZAUR

2.1. Hybrid variational formulation

Let

V≡{v∈L2(�̃) :v|�e ∈H1(�e)}, W=�e�e′<eH
−1/2(�e,e′

)×H−1/2(�) (8)

V is a space of element approximations of the solution and W is a space of Lagrange multipliers.
The latter are introduced to enforce weakly the continuity of the solution across the element
boundaries, as the element approximations comprising the spaceV are allowed to be discontinuous
between elements.

Multiplying the first equation in (1) by a test function v∈V and integrating the diffusion term
by parts give rise to the following weak variational form (W )

(W ) :

⎧⎪⎨
⎪⎩
Find (u,�)∈V×W such that

a(v,u)+b(�,v)=r(v), ∀v∈V

b(�,u)=−rd(�), ∀�∈W

(9)

Here, a(·, ·) and b(·, ·) are bilinear forms on V×V and W×V, respectively. They are given by

a(v,u) ≡ (∇v+va,∇u)�̃ =
∫

�̃
(∇v ·∇u+va ·∇u)d� (10)

b(�,v) ≡∑
e

∑
e′<e

∫
�e,e′

�(ve′ −ve)d�+
∫

�
�v d� (11)

and r(v) and rd(�) are the following linear forms:

r(v)≡( f,v)=
∫

�
f v d�, rd(�)≡

∫
�

�gd� (12)

In (10) and (12), (·, ·) denotes the usual L2 inner product over �; in (11), ve≡v|�e . Note that
the bilinear form a(·, ·) in (10) is not symmetric (a(v,u) �=a(u,v)) for the advection–diffusion
operator due to the presence of the first-order advection term.

2.2. Approximation space Vh

Let h denote the generic size of a typical element �e. Denote the finite dimensional versions of
the solution approximation and Lagrange multiplier spaces defined in (8) by

Vh ⊂V, Wh ⊂W (13)

DEM [1, 7, 32] seeks an approximate solution (uh,�h)∈(Vh,Wh) of the variational problem (9).
The discussion of the space of the Lagrange multiplier approximations Wh is held off until
Section 4. Here, focus is set on the space of element approximations Vh . The primal unknown
uh ∈Vh has one of the two forms given in Table I.VP is the usual space of polynomial interpolants
characteristic of the classical Galerkin FEM. VE is the space of so-called ‘enrichment’ functions
uE . It is spanned by the free-space solutions of the homogeneous form of the governing PDE that
are not already represented in VP—that is,

VE ⊂{uE ∈L2(R2) :LuE =a ·∇uE −�uE =0} (14)
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Table I. Approximation spaces for DGM and DEM elements.

Vh uh

DGM VE uE

DEM VP ⊕(VE\VP ) uP +uE

Since the enrichment functions are employed at an element level, they are chosen as the free-space
solutions of the homogeneous constant-coefficient version of the governing PDE, even in the more
general variable coefficient scenario a=a(x) (not specifically considered in this paper). These
solutions can be obtained with little difficulty using standard PDE techniques—for example, the
method of separation of variables (Section 3).

Table I implies that two varieties of DEM can be defined: a genuine or ‘full’ DEM and an
enrichment-only DEM, referred to in the remainder of this paper as in previous literature as DGM
(for ‘discontinuous Galerkin method’) or ‘pure DGM’ . In the case of genuine DEM elements,
the solution space Vh is constructed as a direct sum of VP and VE . This splitting of the
approximation into polynomials and enrichment functions can be viewed as a decomposition of
the numerical solution into coarse (polynomial) and fine (enrichment) scales. It turns out that,
as will be shown in Section 8, the polynomial field is not required in certain, namely homo-
geneous, problems. Since the enrichment field contains free-space solutions of the underlying
equation to be solved, it may entirely capture the homogeneous solutions rather than merely
enhance the polynomial field. This observation motivates the construction of enrichment-only
DGM elements in which the contribution of the standard polynomial field is dropped from
the approximation entirely, resulting in improved computational efficiency without any loss of
accuracy [7, 32].

3. ENRICHMENT BASES

The basis functions defining the space Vh are derived by solving the homogeneous, free-space,
constant coefficient advection–diffusion equation LuE =0. This can be done using the standard
technique of separation of variables, that is, assuming a C2(�) solution of the form uE (x, y)=∑

k Fk(x)Gk(y) and determining the functions Fk(x),Gk(y) :R→R such that LuE =0. This
leads to

Fk(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ea1x/2
[
Aexp

(√
�2

2
x

)
+B exp

(
−

√
�2

2
x

)]
if k�

a21
4

ea1x/2
[
Acos

(√−�2

2
x

)
+B sin

(√−�2

2
x

)]
if k>

a21
4

(15)
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Gk(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ea2y/2

⎡
⎣C exp

⎛
⎝

√
�2

2
y

⎞
⎠+D exp

⎛
⎝−

√
�2

2
y

⎞
⎠
⎤
⎦ if k�− a22

4

ea2y/2

⎡
⎣C cos

⎛
⎝

√
−�2

2
y

⎞
⎠+D sin

⎛
⎝

√
−�2

2
y

⎞
⎠
⎤
⎦ if k<− a22

4

(16)

where A, B, C , D and k are real constants and

�2≡a21−4k, �2≡a22+4k (17)

The form of the solution depends on the value of the separation of variables constant k relative
to the given advection velocities a1 and a2. More specifically:

(i) When −a22/4�k�a1/4, both Fk and Gk are exponential functions.
(ii) When k<−a22/4, Fk is an exponential function whereas Gk is a trigonometric function.
(iii) When k>a21/4, Fk is a trigonometric function and Gk is an exponential function.

In the first case, uE is a rapidly rising or decaying exponential in both the x- and
y-directions, whereas in the second two cases, the enrichment is oscillatory in either the x- or
y-direction.
At this point, it is helpful to remark that, unless there is a trigonometric source in (1), the

solutions of this BVP do not exhibit an oscillatory behavior. They are known to exhibit, however,
sharp exponential boundary layers in which the velocity profile rises or falls sharply, much like the
functions in case (i). Motivated by this observation, only enrichment functions that are exponential
in both x and y variables are considered in this paper—that is,

uE (x, y)=e((a1/2)±�/2)xe((a2/2)±�/2)y (18)

Different enrichment functions of the form (18) can be generated by varying the signs in (18)
and the values of the constant k in (17).

The fact that the parameter k can take any real value from −∞ to ∞ complicates the system-
atic construction of enrichment basis functions. For this reason, and inspired by DEM for the
Helmholtz equation [1] where the enrichment functions are plane waves propagating in directions
�i , parameterizations in which the constant k is replaced by an angle parameter �i ∈[0,2�) is
sought-after here. To this effect, it is first noted that

�2+�2=a21+a22 (19)

which suggests the following parametrization

�≡|a|cos�i , �≡|a|sin�i (20)

where �i ∈[0,2�) and |a|≡
√
a21+a22. Substituting this parametrization into (18) gives

uE (x;�i )=e1/2(a1+|a|cos�i )xe1/2(a2+|a|sin�i )y (21)

Introducing the shorthand notation

aT� ≡|a|(cos� sin�), aT� ≡|a|(cos� sin�) (22)
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Figure 2. Plots of enrichment function uE (x;�i ) for several values of �i (a1=25,a2=0). (a) �i =0;
(b) �i =�/2; (c) �i =�; and (d) �i =3�/2.

the enrichment space VE can then be written as the following superposition of the 2D exponential
enrichment functions (21):

VE ≡
{
uE ∈L2(�̃) :u|E�e(x)=

nE∑
i=1

ui exp

{
1

2
(a�i +a�) ·(x−xer,i )

}
,0��i<2�,ui ∈R

}
(23)

Here, xer,i ∈�e is an arbitrary reference point for the i th enrichment function uE (x;�i ), introduced
within each element to alleviate the ill-conditioning of the resulting element matrices (Section 7.3).
The scalar nE denotes the number of enrichment functions (the dimension of the space VE ),
selected a priori to design a particular DEM element (Section 6). The set of angles {�i } specifying
an enrichment basis is denoted by

�u ≡{set of angles {�i } defining VE } (24)

The natural interpretation of these angles is that they are flow directions. Not only does this
interpretation fit nicely with the problem at hand, it also facilitates the design and implementation
of DGM/DEM elements of arbitrary orders. To design an element with dimVE =nE , one simply
selects nE angles �i ∈[0,2�), each specifying a function of the form (21). One strategy for
constructing a spaceVE is to select the set �u such that the enrichment functions implied by these
angles exhibit sharp gradients in as many directions as there are basis functions. Figure 2 shows
plots of the enrichment functions (21) for several angles �i . Of particular interest is the relationship
between �i and the advection direction � (2) implied by the advection coefficients a1 and a2.
Setting �i =� in (21), one finds that uE (x;�)=ea1(x−xer )ea2(y−yer ), so that ∇uE (x;�)=auE (x;�).
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It is a well-known fact that the gradient of a function points in the direction in which that function
changes most rapidly. It follows that the enrichment function specified by �i =� changes most
rapidly in the advection direction �. This observation motivates including �i =� in the set �u

defining the enrichment basis of any DGM or DEM element.
Another convenient property of the parametrization (21) of the enrichment functions is the

straight-forward inclusion of the constant basis function uE =const. Indeed,

uE (x;�i =�−n�)=1 (25)

for any n∈Z. That is, a constant basis function is generated by including the angle �i =�−n� in
the set �u defining a particular DEM element (Figure 2(c)). The constant basis function should
be included in the enrichment space of DGM elements, but omitted from the enrichment space
of genuine DEM elements. Indeed, a constant is a free-space solution of the advection–diffusion
equation (1) and may be present in the exact solution one hopes to capture even in the absence
of a source term ( f =0). However, since the polynomial portion of the approximation space
Vh =VE ⊕VP of a genuine DEM element already contains a constant, �i =�−n� is not be
included in the set �u of such an element.

4. APPROXIMATION OF THE LAGRANGE MULTIPLIERS ON UNSTRUCTURED
QUADRILATERAL MESHES

Most, if not all, techniques and theoretical results established so far for approximating Lagrange
multipliers have been derived in the context of standard polynomial approximations of the primal
variable uh . Extending these ideas to the case of exponential approximations uE is not a straight-
forward task.

Given an approximation space Vh , the Lagrange multiplier approximations constituting the
space Wh can be inferred from the weak form (9) and the variational calculus. Applying the
bilinear form a(·, ·) defined in (10) to u,v,∈V and integrating by parts the

∫
�̃ ∇v ·∇u d� term

gives

a(u,v)=
∫

�̃
(a ·∇u−�u)v d�+

∫
�

∇u ·nv d�+∑
e

∑
e′

∫
�e,e′

(∇ue ·neve+∇ue
′ ·ne′

ve
′
)d� (26)

where ne (or ne
′
) is the outward unit normal to �e (or �e′

). Substituting (26) into the first equation
in the weak form (9) leads to

�=∇ue ·ne=−∇ue′ ·ne′
on �e,e′

(27)

and

�=−∇u ·n on � (28)

if a Dirichlet boundary condition is to be enforced on �. The result (27) suggests choosing

�h ≈∇uE
e ·ne=−∇uE

e′ ·ne′
on �e,e′

(29)

as a good approximation of the Lagrange multiplier on an edge �e,e′
—that is, constructing the space

Wh with the approximate normal derivatives of uE on the element edges while paying attention
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Figure 3. Sample unstructured mesh of 100 quadrilateral elements.

to not violating the Babuška–Brezzi inf–sup condition [33–35]. On a mesh of nel quadrilateral
elements, this condition implies the following asymptotic bound on the number of Lagrange
multipliers per edge, n�:

n��nE

2
(30)

almost everywhere in the mesh. The bound (30) is a necessary, but in general not a sufficient
condition for ensuring that a non-singular global interface problem arises in the application of DEM
on a uniform mesh of square elements. In practice, fewer than n� =nE/2 Lagrange multipliers per
edge are used. Numerical tests [7] show that the general rule of thumb is to limit

n� =
⌊
nE

4

⌋
(31)

where, for any x ∈R, �x�≡max{n∈Z|n�x}—that is, �·� is the floor (or greatest integer) function.
In [7], the Lagrange multiplier approximations were derived assuming a uniform mesh of

rectangular elements. In the present work that simplified formulation is extended to problems
discretized on unstructured meshes of quadrilateral straight-edged elements (Figure 3).

Let �ij≡�ei ,e j be a straight edge separating two adjacent elements, �ei and �e j , viewed as an
edge belonging to �ei . Let xij0 =(xij0 , yij0 ) and xij1 =(xij1 , yij1 ) be the coordinates of this edge, labeled
with respect to a right-handed coordinate system so that the outward normal nij to �ei points to
the right of �ei (Figure 4).

Let �ij∈[0,�) be the angle �ij makes with the x-axis and let lij be its length, defined by

�xij= lij cos�ij

�yij= lij sin�ij
(32)
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ni j

ti j

xi j
0 yi j

0

xi j
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i j

Figure 4. Straight edge of element �ei oriented at angle �ij.

�xij≡ xij1 −xij0 , �yij≡ yij1 − yij0 (33)

lij=
√

(�xij)2+(�yij)2 (34)

The unit tangent vector to �ij, tij, is given by

tij= 1

lij
(�xij �yij)T=(cos�ij sin�ij)T≡(t ij1 t ij2 )T (35)

so that

nij=(t ij2 − t ij1 )T (36)

Let 0�s�lij denote the arc length coordinate. �ij can be parameterized as follows:

�ij :
{
x= xij0 + t ij1 s

y= yij0 + t ij2 s
, 0�s�lij (37)

As outlined in Section 3, the first step in designing a DGM or DEM element is to select the
set �u that defines the element’s enrichment basis. Given the parametrization of �ij (37) and the
set �u (24), one can begin by computing the corresponding Lagrange multiplier approximations
according to (13)

�h(s)|�ij =
nE∑
k=1

�k exp

{
1

2
[(a�+a�k ) ·tij](s−sijr,k)

}
︸ ︷︷ ︸

≡�h(s;�k)

, 0�s�lij (38)
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where tij is the unit tangent vector to �ij defined in (35), sijr,k is an arbitrary reference point and
the �k are the unknown multiplier dofs. Substituting the expression of tij (35) in the above result
and applying some trigonometric identities’ transforms (38) into

�h(s)|�ij =
nE∑
k=1

�k exp

{ |a|
2

[cos(�−�ij)+cos(�k−�ij)](s−sijr,k)

}
︸ ︷︷ ︸

≡�h(s;�k)

, 0�s�lij (39)

This shows that �h(s;�)|�ij is a function of Pe, � (the advection direction), �ij (the angle at which
the edge �ij is oriented) and �k ∈�u . In a uniform mesh aligned with the x- and y-coordinate axes,
�ij=0,� for the top/bottom edges of each element and �ij=�/2, 3�/2 for the left/right edges of
each element. For these values, (39) recovers the formulas derived in [7] for the approximation of
the Lagrange multiplier on the edges of a square element in a uniform mesh

�tb =
nE∑
i=1

�tbi exp

{ |a|
2

(cos�+cos�i )(x−xr,i )

}
, x j�x�x j+1

�lr =
nE∑
i=1

�lri exp

{ |a|
2

(sin�+sin�i )(y− yr,i )

}
, y j�y�y j+1

(40)

for an element �e=(x j , x j+1)×(y j , y j+1)⊂R2. Here, �tb and �lr denote the Lagrange multiplier
approximations on the top/bottom and left/right edges in the mesh, respectively.

The set �u (24) typically leads to too many Lagrange multiplier dofs (38) in the sense that
condition (30) fails. For this reason, the space of approximation of the Lagrange multiplier field
is constructed as Wh =∪e∪e j<ei W

h
i j where

Wh
i j =

{
�h ∈L2(�ij) :�h(s)|�ij =

n�∑
k=1

�k exp

(
1

2
[(a�+a��

k
) ·tij](s−sijr,k)

)
,

0�s�lij,0���
k<2�,�k ∈R

}
(41)

Here, {��
k}n

�

k=1=�� is another set of angles that is defined a priori and independently from �u ,
and n� is the number of Lagrange multiplier dofs per edge.

Next, it is noted that a ‘naı̈ve’ selection of the set �� defining Wh is likely to cause a Lagrange
multiplier redundancy on some edge in the mesh. This is not desirable as it leads to a singularity in
the algebraic system of equations associated with a discretization by DEM. For example, suppose
�� ={��

1=0,��
2=�} and �ij=�/2 for a particular edge �ij. Furthermore, suppose that the flow is

advected from left to right so that �=0. Then, from (39) it follows that

�h |�ij(s;��
1=0)=�h |�ij(s;��

2=�)=1 (42)

Hence, both angles ��
1=0 and ��

2=� define the same constant Lagrange multiplier.
The following lemma defines a set of necessary conditions for the set �� to generate redundant

Lagrange multiplier approximations. When n�>2, one must check that each pair of angles in the
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proposed set �� does not verify any of these conditions before finalizing the design of a DGM or
DEM element.

Lemma 1
Two Lagrange multipliers �h(s;��

1) and �h(s;��
2) given by (38) (or equivalently (39)) on a

straight edge �ij parameterized by (37) are redundant (that is, �h(s;��
1)=C�h(s;��

2) for some real
constant C) if

��
1−��

2

2
=n� (43)

or

��
1+��

2

2
=�ij+n� (44)

for any n∈Z, where �ij is the angle at which �ij is oriented (32).

Proof
From (39), �h(s;��

1)=�h(s;��
2) if

cos(��
1−�ij)=cos(��

2−�ij) (45)

Clearly (45) holds if ��
1=��

2+2n� for any n∈Z, which proves (43). Since cos(·) is even, (45) is
equivalent to

cos(��
1−�ij)=cos(�ij−��

2) (46)

which holds if ��
1−�ij=�ij−��

2+2n� or ��
1+��

2
2 =�ij+n� for n∈Z. �

5. GENERAL AND MESH INDEPENDENT ELEMENT DESIGN PROCEDURE

A general procedure for designing a DGM or DEM element with an enrichment space containing
nE basis functions is summarized in Algorithm 1.

Condition (44) of Lemma 1 motivates choosing �� as a set of angles that are clustered around
�ij—that is,

�� =�ij+{��
k}n

�

k=1, {��
k}n

�

k=1∈[0,2�) (47)

in which case (39) simplifies to

�h(s)|�ij =
n�∑
k=1

�k exp

( |a|
2

[cos(�−�ij)+cos��
k](s−sr,k)

)
(48)

for 0�s�lij. For the choice of angles (47), the necessary condition for redundancy (44) becomes

��
k +��

l

2
=�ij+n�⇔ ��

k +��
l

2
=n� (49)
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Algorithm 1 DGM/DEM element design

Fix nE ∈N, the desired number of angles defining the enrichment space VE (23).
Select a set �u =�+{�i }nEi=1 of nE distinct angles between [0,2�) for which no pair of angles
satisfy any of the conditions stated in Lemma 4.1, and which:
if designing a pure DGM element then

Includes �i =�−� in �u

else
Omits �i =�−� from �u .

end if
Let n� =� nE

4 �.
Choose a set of n� distinct angles {�k}n�

k=1 between [0,�).
for each edge �i j ∈�int having slope �i j do

Let �� =�i j +{�k}n�

k=1 be the set of angles defining the Lagrange multiplier approximations

(41) on �e,e′
.

end for

for any two distinct k, l∈{1,2, . . . ,n�}. Since condition (49) is independent of �ij, condition (44)
is in this case (quadrilateral) mesh independent.

A consequence of the element design approach outlined in Algorithm 1 is that, in general,

�� �⊂�u (50)

Selecting �� independently of �u is actually rather intuitive: since there are almost always more
normal derivatives of the enrichment functions in VE than allowed by (31) and one does not
know a priori which of these Lagrange multipliers are more important and should be kept in ��,
and which are less important and can be omitted, a reasonable compromise is to define �� as
some average of the angles in �u . Indeed, in practice, the angles {��

k}n
�

k=1 that define the set ��

(47) are selected uniformly between the angles [0,�) so as to ‘cover’ the R2 space in some way
(Table III).

6. HIGHER-ORDER 2D DGM AND DEM ELEMENTS FOR ADVECTION–DIFFUSION

Here, several higher-order quadrilateral DGM and DEM elements are proposed for the finite
element solution of 2D advection–diffusion problems on unstructured meshes. The notation
used for describing these elements is summarized in Table II. The letter ‘Q’ stands for
‘quadrilateral’. As before, nE denotes the number of enrichment functions (number of angles
in the set �u) and n� the number of Lagrange multiplier dofs per edge (number of angles
in the set ��). Two cases are distinguished: Pe�103 (small to moderate Péclet number
regime), and Pe>103 (high Péclet number regime). In the latter case, the DGM and DEM
elements are designed slightly differently to address some numerical issues and distinguished
by the presence of a horizontal bar over their names (·−·−·). The ‘+’ superscript desig-
nates a genuine DEM element (uh =uP +uE ) and distinguishes it from a DGM element
(uh =uE ).
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Since the approximation space VE is constructed independently from VP , the polynomial
component of a DEM element can be set to that of any higher-order standard Galerkin element
Qp, independently from the value of nE . From a practical perspective, it is however unnecessary
to do so because for most advection–diffusion problems, the benefit of including a higher-order
polynomial approximation in a DEM element is already provided by the presence of the enrichment
field in this element. For this reason and in order to maximize computational efficiency, all DEM
elements described in this section share the same low-order polynomial component that is identical
to that of the standard bilinear element Q1. Hence,

Q−nE −n�+ ≡[Q−nE −n�]∪[Q1], Q−nE −n�+ ≡[Q−nE −n�]∪[Q1] (51)

6.1. Element design for Pe�103

Table III describes three DGM elements and three DEM elements designed according to the general
procedure outlined in Section 5. For all these elements, the enrichment bases are defined by

�u ={�m+1}nE−1
m=0 ≡�+{�m+1}n

E−1
m=0 , �m = 2m�

nE
(52)

Note in Table III that for all DEM elements, nE is chosen as an odd integer. This ensures that
�i =n�−�, n∈Z, is not included in �u and therefore the constant approximation is not included
in this case in the enrichment field. Note also that all values of n� are specified according to
(31), all sets �� defining the Lagrange multiplier approximations have the form (47), and all sets
{�k}n�

k=1 are such that condition (49) is avoided by all pairs of angles in these sets.
As an example, the DGM element Q−8−2 described in Table III is graphically depicted in

Figure 5.

Table II. Notation.

Element Pe�103 Pe>103

DGM Q−nE −n� Q−nE −n�

DEM Q−nE −n�+ Q−nE −n�+

Table III. Higher-order DGM and DEM elements.

Name nE �u n� ��

DGM element Q−8−2 8 �+{m�
4 :m=0, . . . ,7} 2 �ij+{0, �

2 }
Q−12−3 12 �+{m�

6 :m=0, . . . ,11} 3 �ij+{ �
4 , �

2 , 3�
4 }

Q−16−4 16 �+{m�
8 :m=0, . . . ,15} 4 �ij+{0, �

4 , �
2 , 3�

4 }
DEM element Q−9−2+ 9 �+{ 2m�

9 :m=0, . . . ,8} 2 �ij+{0, �
2 }

Q−13−3+ 13 �+{ 2m�
13 :m=0, . . . ,12} 3 �ij+{ �

4 , �
2 , 3�

4 }
Q−17−4+ 17 �+{ 2m�

17 :m=0, . . . ,16} 4 �ij+{0, �
4 , �

2 , 3�
4 }
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i j 1 0

2 2 i j

(a) (b)

Figure 5. Illustration of the sets � and �� that define the Q−8−2 element. (a) Enrichment basis
and (b) Lagrange multiplier dofs.

6.2. Element design for Pe>103

A difficulty arises in the implementation of the elements described in Section 6.1 when the Péclet
number is very large, say Pe>103. Such a Péclet number can be encountered in high Reynolds
number flows. In this case, it is found that even with the use of a reference point xer,i inside
each element �e (see Section 7.3), the local and global matrices arising from the DGM or DEM
discretizations become ill-conditioned. To address this issue, ‘advection-limited’ variants of the
DGM and DEM elements described so far are designed to operate in the high Péclet number
regime defined here as Pe>103. In these variant elements, the advection coefficients appearing in
the arguments of the exponential functions of the enrichment basis are limited to an experimentally
determined ‘safe’ value of 103 to obtain approximation

uE (x;�)|�e =
nE∑
i=1

exp

{
1

2
(a�+a�i ) ·(x−xer,i )

}
, aT�i ≡min{103, |a|}(cos�i sin�i ) (53)

where the bar notation is used to designate advection limitation. The resulting DGM and DEM
elements are denoted by Q−nE −n� (DGM) and Q−nE −n�+ (DEM).

It is noted that for Pe>103, functions of the form (53) are not free-space solutions of the
homogeneous advection–diffusion equation for the original Péclet number. Instead, they are free-
space solutions of the homogeneous advection–diffusion equations for different and lower Péclet
numbers. Nevertheless, these functions are more pertinent to the problem of interest than mere
polynomials.

7. IMPLEMENTATION AND COMPUTATIONAL PROPERTIES

The discretization of equations (9) by DEM as described in Section 3 gives rise to the following
matrix problem: ⎛

⎜⎜⎝
kPP kPE kPC

kEP kEE kEC

kCP kCE 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
uP

uE

k

⎞
⎟⎟⎠=

⎛
⎜⎜⎝
rP

rE

rC

⎞
⎟⎟⎠ (54)
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where uE, uP and k are vectors containing the dofs uE , uP and �h , respectively. The superscript ‘C’
refers to the continuity constraints enforced weakly by the Lagrange multipliers. kEE, kEP and kPP

are associated with the bilinear forms a(vE ,uE ), a(vE ,uP) and a(vP ,uP) (10), respectively; kEC

and kPC are associated with b(vE ,�h) and b(vP ,�h) (11), respectively; rE and rP are associated
with r(vE ) and r(vP) (12), respectively; rC is associated with rd(�

h) (12).
Owing to the discontinuous nature of VE , uE can be eliminated at the element level by a static

condensation. For a DEM element, forming the Schur complement of the second equation in (54)
and substituting this expression into the first and third equations leads to the following (local)
statically condensed system: (

k̃PP k̃PC

k̃CP k̃CC

)(
uP

k

)
=
(
r̃P

r̃C

)
(55)

where

k̃PP = kPP−kPE(kEE)−1kEP

k̃PC = kPC−kPE(kEE)−1kEC

k̃CP = kCP−kCE(kEE)−1kEP

k̃CC = −kCE(kEE)−1kEC

(56)

and

r̃P = rP−kPE(kEE)−1rE

r̃C = rC−kCE(kEE)−1rE
(57)

In the case of a DGM element, there is no polynomial field and therefore k̃PP, k̃PC, k̃CP, r̃P={∅},
and the statically condensed system simplifies to

−kCE(kEE)−1kECk=rC −kCE(kEE)−1rE (58)

7.1. Computational complexity

One computational advantage of DEM is that its computational complexity is not directly deter-
mined by the dimension of VE . Instead, it depends on the total number of Lagrange multiplier
dofs and the sparsity pattern of the system matrix (55) (DEM) or (58) (DGM). This property is a
result of the element-level static condensation (55), which is enabled by the discontinuous nature
of the approximation of the solution.

The computational complexities of the DGM and DEM elements proposed in Section 6 are given
in Table IV for the case of a mesh of nel=n2 quadrilateral elements. For reference, the table also
includes the computational complexity of each of the standard 2D Lagrangian biquadratic, bicubic
and biquartic quadrilateral Galerkin elements, denoted here by Q2, Q3 and Q4, respectively.
Roughly speaking, one can say that two elements within the same following pairs or triplets
have comparable computational complexities: (Q−8−2,Q−9−2+,Q2), (Q−12−3,Q−13−
3+,Q3) and (Q−16−4,Q−17−4+,Q4).

Also reported in Table IV is the stencil width of each element for an n×n uniform mesh,
a measure of the sparsity pattern of the resulting system matrix. The reader can observe that
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Table IV. Computational complexity of some DGM, DEM and standard Galerkin elements.

Stencil width for
Element Asymptotic # of dofs uniform n×n mesh

Q2 3nel 21
Q3 5nel 33
Q4 7nel 45
Q−8−2 4nel 14
Q−12−3 6nel 21
Q−16−4 8nel 28
Q−9−2+ 5nel 33
Q−13−3+ 7nel 45
Q−17−4+ 9nel 57

the stencil of a DGM discretization is smaller than that of the Galerkin element that leads to a
comparable total number of dofs for a given problem.

7.2. Analytical computation of element level arrays

A convenient property of the enrichment basis (23) is that (10)–(12) can be integrated analytically
on any mesh of quadrilateral straight-edged elements. For example, let kECkm |�ij be the (k,m)

component of the kEC matrix on the edge �ij having slope �ij and length lij. Using the notation
introduced in Section 3,

kECkm |�ij =
∫ lij

0
uE (x;�k)|�ij�h(s;�m)ds

=
∫ lij

0
exp

{
1

2lij
(2a�+a�k +a�m ) ·�xijs−ru(�k)−r�(�m)

}
ds (59)

where

ru(�k)≡ 1

2
(a�+a�k ) ·(xer,k−xij0), r�(�m)≡ 1

2lij
(a�+a�m ) ·(�xijsijr,m) (60)

The integral (59) is a simple one-dimensional integral of an exponential function. Similarly, all
other integrations incurred by the element level matrices and vectors simplify to integrals of
exponentials. These can be evaluated analytically, thereby eliminating the need for any quadrature
rule and avoiding the associated numerical errors.

Another convenient property of the functions (23) is that they satisfy LuE =0. As a result,
integration by parts of (10) gives

a(vE ,uE )=
∫

�̃
(∇vE ·∇uE +a ·∇uEvE )d�=

∫
�̃

∇uE ·nvE d� (61)

Thus, no volume integral involving the exponential enrichments needs be computed, which further
simplifies the implementation of a DGM or DEM element.
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7.3. Reference point

As mentioned earlier, the enrichment functions (23) are scaled by the effect of an arbitrary
reference point xer,i within each element �e to avoid evaluating a very large floating point number
on a finite precision arithmetic processor. Numerical experiments demonstrate that overflow is
inevitable if the same reference point is used for each of the enrichment functions. The following
algorithm for setting the reference points produces good performance for the DGM and DEM
elements proposed herein.

In Algorithm 2, a� and a�i are defined in (22), a�( j) (a�( j)), j =1,2, is the j th component of
a� (a�), and {(xek , yek )}4k=1 are the coordinates of the nodes of element �e. An analogous algorithm

is used to determine the Lagrange multiplier reference points sijr,k which are set either to 0 or to
lij depending on the sign of the argument of the exponential in (41).

Algorithm 2 Selection of enrichment function reference point
for j =1 to nel do

for i=1 to nE do
if a�(1)+a�i (1)�0 then

xer,i =max{xek }4k=1
else

xer,i =min{xek }4k=1
end if
if a�(2)+a�i (2)�0 then

yer,i =max{yek }4k=1
else

yer,i =min{yek }4k=1
end if

end for
end for

8. NUMERICAL RESULTS

Here, the higher-order DGM and DEM advection–diffusion elements described in Section 6 are
tested on four benchmark problems:

(i) A homogeneous boundary layer problem on the unit square whose exact solution is spanned
by the DGM basis (23) [Section 8.1].

(ii) A homogeneous boundary layer problem on the unit square whose exact solution is not
spanned by the DGM basis (23) [Section 8.2].

(iii) A two-scale inhomogeneous BVP on the unit square [Section 8.3].
(iv) A ‘double ramp’ problem on an L-shaped domain [Section 8.4].

In each case, the performance of the DGM and/or DEM elements of Section 6 is contrasted
with that of standard Galerkin elements. For the first benchmark problem (Section 8.1), it is also
compared with that of several stabilized finite elements developed in [36], as these elements were
also tested by their developers on this problem. It is emphasized that all elements denoted by
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Qn , n=1,2,3,4, are non-stabilized Galerkin elements. All reported errors are relative errors
measured in the L2(�) ‘broken’ norm. For a DGM element with nE enrichment functions, the
absolute counterpart of this error E is computed as follows:

E2=∑
e

∥∥∥∥∥ nE∑
i=1

diu
E (x;�i )|�e −uref(x)|�e

∥∥∥∥∥
2

L2(�e)

=∑
e

⎧⎨
⎩
∫

�e

(
nE∑
i=1

diu
E (x;�i )−uref(x)

)2

d�

⎫⎬
⎭ (62)

where uref(x) is a reference (or the exact) solution, uE (x;�i ) are the enrichment functions given
by (21), and di are the enrichment dofs. The errors are measured either with respect to the exact
solution (when available, as in the case of problems (i)–(iii)), or a reference solution computed
using a sufficiently refined mesh (problem (iv)). All comparisons are performed between elements
of similar computational complexity a priori, either for a specified level of accuracy or for a fixed
total number of dof. It turns out that all compared elements have also a similar convergence rate
a posteriori.

All unstructured meshes are generated by perturbing the nodes of an n×n uniform mesh (see
e.g. Figure 3). All integrals (10)–(12) and therefore all matrices and right-hand sides (54) are
computed exactly.

8.1. Homogeneous boundary layer problem with a flow aligned with the advection direction

Let �=(0,1)×(0,1). Consider the BVP (1) with f =0 and Dirichlet boundary conditions on �
designed so that the exact solution of this problem is

uex(x;�)= ea�·(x−1)−1

e−a�·1−1
(63)

where 1T≡(1 1) and a� is defined in (22). Since the length of the domain is equal to one, the
global Péclet number on � is given by Pe=|a|. For a specified advection direction � and Péclet
number Pe, the solution of this BVP exhibits a boundary layer in the direction � whose gradient
is a function of Pe. The higher is Pe, the steeper is the solution.

Among all elements developed in Section 6, only the pure DGM elements Q−8−2, Q−
12−3 and Q−16−4 are considered for the solution of this benchmark problem because it is a
homogeneous one. In addition, the lower-order DGM element Q−4−1, which is an extension to
unstructured quadrilaterals based on the approach outlined in Section 4 of the rectangular DGM
element R−4−1 previously developed in [7], is applied to the solution of this BVP. Element
Q−4−1 is characterized by the sets of angles

�u
Q−4−1=�+

{m�

2
:m=0, . . . ,3

}
, ��

Q−4−1={�} (64)

The performance results obtained for these DGM elements are compared with those of several
standard Galerkin and stabilized finite elements when the size of the problem is kept fixed at
approximately 400 dofs. Before commenting on these results, it is noted that:

• For this BVP, uex∈VE for all DGM elements considered herein and all advection directions
�. However, this does not mean that each of these DGM elements should be expected to
recover the exact solution (63), unless ∇uex ·n∈Wh of this element.
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• For a uniform discretization, �ij (Figure 4) takes the values of 0,�/2,� or 3�/2 for all edges
�ij∈�int of the mesh. From Table III and the information given in (64), it follows that in this
case, for each considered DGM element, ∇uex ·n∈Wh for the advection directions given in
Table V.

• Therefore, for �=0, all four DGM elements considered herein should capture the solution of
the BVP defined above to machine precision. For �=�/6, only the Q−4−1 element should
do so. For �=�/4, all four DGM elements considered herein except Q−8−2 should capture
the exact solution to machine precision.

Table VI reports for Pe=102 and Pe=103 and three different advection directions the relative
errors associated with the solutions computed on uniform meshes using the standard Galerkin
element Q1, three different stabilized versions of this bilinear element developed in [36] under the
labels STR, EST and FFH, and the lower-order DGM element Q−4−1 that has a comparable
complexity. In all cases, the number of dofs is kept fixed at about 400. The reader can observe that,
consistently with the remarks formulated above, the DGM element Q−4−1 reproduces the exact
solution to almost machine precision for all three advection directions �=0, �=�/6 and �=�/4.
As such, it outperforms in these cases—by a large margin—the standard Galerkin element Q1 and
all of its considered stabilized counterparts.

Similarly, Table VII reports the relative errors associated with the numerical solutions provided
by the elements Q1, STR, EST, FFH, and the advection-limited DGM element Q−4−1, for the

Table V. Advection directions �/�∈{0,1/6,1/4} for which ∇uex ·n∈Wh for uniform
discretizations of � (Section 8.1).

�/�

DGM element 0 1
6

1
4

∇uex ·n∈Wh?
Q−4−1 C C C
Q−8−2 C
Q−12−3 C C
Q−16−4 C C

Table VI. Homogeneous boundary layer problem of Section 8.1 with Pe�103: relative errors in the
L2(�) broken norm for uniform discretizations with approximately 400 dofs (non-stabilized and stabilized

Galerkin Q1 elements vs DGM Q−4−1 element).

Pe �/� Q1 STR EST FFH Q−4−1

102 0 8.97×10−2 7.62×10−2 7.62×10−2 8.59×10−2 3.06×10−15

1
6 1.31×10−2 1.14×10−2 1.15×10−2 1.25×10−2 1.18×10−16

1
4 1.31×10−2 1.14×10−2 1.15×10−2 1.26×10−2 2.66×10−15

103 0 5.77×10−1 1.28×10−1 1.28×10−1 1.29×10−2 3.43×10−14

1
6 2.53×10−2 1.67×10−2 1.67×10−2 1.75×10−2 1.24×10−15

1
4 2.62×10−2 1.67×10−2 1.67×10−2 1.77×10−2 3.19×10−14
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Table VII. Homogeneous boundary layer problem of Section 8.1 with Pe=106: relative errors in the
L2(�) broken norm for uniform discretizations with approximately 400 dofs (non-stabilized and stabilized

Galerkin Q1 elements vs advection-limited DGM Q−4−1 element).

Pe �/� Q1 STR EST FFH Q−4−1

106 0 8.44×102 1.29×10−1 1.29×10−1 1.29×10−1 2.24×10−2

1
6 9.75 1.67×10−2 1.67×10−2 1.75×10−2 1.11×10−3

1
4 9.97 1.67×10−2 1.67×10−2 1.67×10−2 1.29×10−3

case of the very large Péclet number of 106. The solutions provided by the considered stabilized
finite elements are shown to be on average about four orders of magnitude more accurate for
�=0 and three orders of magnitude more accurate for � �=0 than that generated by the standard
element Q1. Since by construction, the basis functions of advection-limited DGM elements are
not free-space solutions of the homogeneous advection–diffusion equation for the original Péclet
number, the DGM element Q−4−1 cannot capture the exact solution to almost machine precision.
However, at least for this benchmark problem, this element is found to deliver a numerical solution
that is about one order of magnitude more accurate than that delivered by any of the considered
stabilized finite element.

Table VIII reports for Pe=102 and Pe=103 and the same three different advection directions
as before the relative errors associated with the solutions computed on uniform meshes using
the standard Galerkin elements Q2, Q3 and Q4, and the higher-order DGM elements Q−8−2,
Q−12−3 and Q−16−4. In all cases, the number of dofs is kept fixed at 400. For �=0, the DGM
element Q−8−2 performs as expected and captures the exact solution of the BVP considered
herein to almost machine precision. In the other two cases, this element whose computational
complexity is similar to that of the standard Galerkin element Q2 produces numerical solutions
that are one order of magnitude more accurate than those delivered by the Q2 element when
Pe=102, and one to four orders of magnitude more accurate when Pe=103. Similarly, the DGM
element Q−12−3 captures as expected the exact solution to almost machine precision for �=0
and �=�/4. For �=�/6, this element whose computational complexity is comparable to that of
element Q3 produces a numerical solution that is two orders of magnitude more accurate than that
delivered by the element Q3 when Pe=102, and almost four orders of magnitude more accurate
when Pe=103. Similar conclusions can be drawn from the comparison of the performances of
the DGM element Q−16−4 and the standard Galerkin element Q4 for the solution of this BVP
problem on structured meshes using 400 dofs.

On unstructured meshes, a DEM or DGM element whose enrichment field happens to include the
exact solution of the problem of interest cannot be expected to capture that exact solution to machine
precision at low mesh resolution because even in this case, ∇uex ·n /∈Wh in general. However, the
performance results reported in Table IX show that in this case, the DGMmethodology outperforms
the standard Galerkin methodology by a large margin. More specifically, for the solution on
unstructured meshes using a fixed number of 400 dofs of the BVP considered herein with Pe=102

and Pe=103, the DGM element Q−8−2 is found to deliver numerical results that are one to
three orders of magnitude more accurate than those delivered by the element Q2. The relative
errors associated with the solutions produced by the Q−12−3 element are shown to be two to
five orders of magnitude smaller than those associated with the numerical solutions computed with
the element Q3, and those associated with the solutions computed using the element Q−16−4
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Table VIII. Homogeneous boundary layer problem of Section 8.1 with Pe�103: relative
errors in the L2(�) broken norm for uniform discretizations with approximately 400 dofs

(non-stabilized Galerkin vs DGM elements).

Pe �/� Q2 Q−8−2 Q3 Q−12−3 Q4 Q−16−4

102 0 5.77×10−2 4.77×10−15 4.06×10−2 8.03×10−14 2.39×10−2 9.22×10−13

1
6 6.52×10−3 2.40×10−4 3.95×10−3 6.61×10−5 2.02×10−3 1.03×10−5

1
4 6.51×10−3 2.67×10−4 3.83×10−3 1.22×10−14 1.87×10−3 4.56×10−13

103 0 4.33×10−1 2.22×10−10 3.68×10−1 5.78×10−13 2.44×10−1 9.75×10−10

1
6 1.49×10−2 8.38×10−4 1.21×10−2 5.50×10−6 9.47×10−3 3.31×10−6

1
4 1.53×10−2 5.62×10−6 1.24×10−2 4.36×10−14 9.81×10−3 1.27×10−12

Table IX. Homogeneous boundary layer problem of Section 8.1 with Pe�103: relative errors
in the L2(�) broken norm for unstructured discretizations with approximately 400 dofs

(non-stabilized Galerkin vs DGM elements).

Pe �/� Q2 Q−8−2 Q3 Q−12−3 Q4 Q−16−4

102 0 5.66×10−2 9.11×10−5 3.90×10−2 1.35×10−5 2.36×10−2 2.23×10−6

1
6 6.45×10−3 2.30×10−4 3.90×10−3 6.32×10−5 2.05×10−3 1.04×10−5

1
4 6.44×10−3 1.78×10−4 3.79×10−3 2.47×10−6 1.89×10−3 2.42×10−8

103 0 4.32×10−1 1.69×10−4 3.64×10−1 2.58×10−6 2.43×10−1 7.84×10−7

1
6 1.49×10−2 3.71×10−4 1.21×10−2 5.51×10−5 9.48×10−3 3.24×10−6

1
4 1.49×10−2 9.62×10−5 1.23×10−2 3.21×10−6 9.83×10−3 3.22×10−7

Table X. Homogeneous boundary layer problem of Section 8.1 with Pe=106: relative errors in the L2(�)
broken norm for unstructured discretizations with approximately 400 dofs (non-stabilized Galerkin vs

advection-limited DGM elements).

Pe �/� Q2 Q−8−2 Q3 Q−12−3 Q4 Q−16−4

106 0 7.07×102 2.23×10−2 6.64×102 2.23×10−2 5.14×102 2.22×10−2

1
6 3.20 8.47×10−4 5.15 7.58×10−4 3.45 7.57×10−4

1
4 5.23 7.07×10−4 7.47 7.06×10−4 6.89 7.05×10−4

are two to almost six orders of magnitude smaller than the relative errors associated with the
numerical solutions computed with the element Q4. Also as expected, the higher-order is the DGM
element, the lower is the obtained relative error. For the case of the very high Péclet number of 106,
Table X shows that all of the standard Galerkin elements Q2, Q3 and Q4 fail to deliver acceptable
solutions, particularly for �=0. On the other hand, the proposed higher-order advection-limited
DGM elements deliver solutions with relative errors ranging between 10−4 and 10−2.

Finally, Figure 6 compares the nodal values of the solutions computed with the Q−12−3 and
Q3 elements when the advection direction is set to �=0 and the Péclet number to Pe=103.
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Figure 6. Nodal values of approximated and exact solutions of the homogeneous boundary layer problem
of Section 8.1 with �=0, 1600 dofs and Pe=103. (a) Q3; (b) Q−12−3; and (c) exact.

Table XI. Homogeneous boundary layer problem of Section 8.2 with �=�/7 and Pe�103: relative
errors in the L2(�) broken norm for unstructured discretizations with approximately 1600 dofs

(non-stabilized Galerkin vs DGM elements).

Pe 	/� Q2 Q−8−2 Q3 Q−12−3 Q4 Q−16−4

102 0 2.32×10−3 5.79×10−5 9.55×10−4 4.26×10−6 3.79×10−4 4.94×10−7

1
4 1.40×10−3 8.10×10−5 4.93×10−4 9.53×10−7 1.64×10−4 1.30×10−8

1
2 1.18×10−3 4.18×10−5 3.77×10−4 1.01×10−5 1.19×10−4 2.24×10−8

103 0 5.92×10−3 1.79×10−3 4.34×10−3 1.10×10−4 3.23×10−3 2.30×10−5

1
4 6.06×10−3 2.54×10−4 4.46×10−3 1.23×10−5 3.29×10−3 8.82×10−7

1
2 5.97×10−3 2.12×10−4 4.36×10−3 1.11×10−5 3.18×10−3 1.59×10−6

The reader can observe that the DGM solution does not exhibit the spurious oscillations that pollute
the Galerkin solution.

8.2. Homogeneous boundary layer problem with a flow not aligned with the advection direction

Here, attention is focused on the solution of a homogeneous boundary layer problem with a flow
that is not aligned with the advection direction. To this effect, the BVP (1) is considered with
Dirichlet boundary conditions designed so that the exact solution is

uex(x;�,	)= e1/2(a�+a	)·(x−1)−1

e−1/2(a�+a	)·1−1
(65)

where �∈[0,2�) is the advection-direction and 	∈[0,2�) is an arbitrary flow direction. Again,
the domain � is taken to be the unit square. It is discretized by unstructured meshes. In all cases,
the number of dofs is kept fixed at 1600.

In general, solutions of the form given in (65) are not in the span of the enrichment space VE

described in (23), except for certain values of � and 	. Here, the advection direction is fixed
to �=�/7 and the direction 	 is varied by angles of �/4 so that the exact solution (65) is not
contained in the space of approximation of any of the DGM element considered herein.

Table XI reports for Pe=102 and Pe=103 the relative errors associated with the solutions
computed on unstructured meshes using the standard Galerkin elements Q2, Q3 and Q4, and the
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Table XII. Homogeneous boundary layer problem of Section 8.2 with �=�/7 and Pe=106: relative errors
in the L2(�) broken norm for unstructured discretizations with approximately 1600 dofs (non-stabilized

Galerkin vs advection-limited DGM elements).

Pe 	/� Q2 Q−8−2 Q3 Q−12−3 Q4 Q−16−4

106 0 2.87×10−1 2.07×10−3 1.85×10−1 8.56×10−4 9.84×10−2 6.88×10−4

1
4 2.87×10−1 7.87×10−4 1.85×10−1 5.68×10−4 9.84×10−2 4.61×10−4

1
2 2.87×10−1 9.01×10−4 1.85×10−1 6.77×10−4 9.84×10−2 5.50×10−4

Table XIII. Convergence rates on unstructured meshes (Section 8.2, �=�/7 and 	=0).

Convergence rate Required # dofs to achieve
Element (Pe=102) a relative error of 10−3 (Pe=103)

Q2 2.38 24300
Q−8−2 3.27 5400
Q3 3.48 12500
Q−12−3 3.88 850
Q4 4.41 8600
Q−16−4 5.19 570

higher-order DGM elements Q−8−2, Q−12−3 and Q−16−4. In all cases, the DGM elements
are reported to outperform their standard Galerkin counterparts (from the computational complexity
viewpoint) by a very large margin. The performance results reported in Table XII for Pe=106

show that the advection-limited DGM elements outperform their standard Galerkin counterparts
by even a larger margin of three orders of magnitude in accuracy.

Table XIII reports for the BVP considered herein the convergence rates measured on unstructured
meshes for the standard Galerkin and DGM elements at Pe=102. The DGM elements Q−8−2,
Q−12−3 and Q−16−4 deliver roughly cubic, quartic and quintic convergence rates, respec-
tively. Hence from this viewpoint too, these elements are ‘comparable’ to the standard Galerkin
elements Q2, Q3 and Q4, respectively. The performance results reported in Table XIII also show
that to achieve a relative error of 0.1% for Pe=103, the DGM elements Q−8−2, Q−12−3 and
Q−16−4 require 4.5, 14.7 and 15.1 times fewer dofs than the standard Galerkin elements Q2, Q3
and Q4, respectively, thereby demonstrating the computational superiority of the DGM method-
ology.

The aforementioned convergence rates are also graphically depicted in Figure 7. The oscillations
in the tail end of the curve for the DGM element Q−16−4 is due to the ill-conditioning of this
element.

8.3. Two-scale inhomogeneous problem

To highlight the role of the polynomial field uP in DEM, a non-homogeneous variant of the
boundary layer problem defined in Section 8.1 is considered here. More specifically, the source
term

f (x;�)=a� ·1+|a|(y cos�+x sin�) (66)
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Figure 7. Convergence rates on unstructured meshes (Section 8.2, �=�/7, 	=0 and Pe=102).

is added and the Dirichlet boundary conditions are designed so that the exact solution to problem
(1) is

uex(x;�)= x ·1+xy︸ ︷︷ ︸
slowly varying

+
(
ea�·(x−1)−e−a�·1

e−a�·1−1

)
︸ ︷︷ ︸

rapidly varying

(67)

This exact solution contains two scales: a rapidly varying exponential and a slowly varying
polynomial. Because of this multi-scale behavior, a true DEM element whose approximation basis
includes the enrichment as well as the polynomial fields (uh =uP +uE ) is used to solve this
problem.

The performance results obtained for this problem and summarized in Table XIV demonstrate
once again the superior accuracy and computational efficiency of the DEM methodology for the
solution of inhomogeneous advection–diffusion problems. In particular, Table XV shows that for
Pe=106, the advection-limited DEM elements outperform their standard Galerkin counterparts
by an impressive margin.

Table XVI shows that for this two-scale problem, the DEM elements Q−9−2+, Q−13−3+
and Q−17−4+ exhibit convergence rates of approximately 3, 4 and 5, respectively (Figure 8).
Therefore, they are comparable from this viewpoint to the standard Galerkin Q2, Q3 and Q4
elements except that they possess dramatically smaller error constants. For Pe=103, the DEM
element Q−17−4+ delivers the same accuracy as Q−13−3+ and Q−9−2+ but using 2.5 and
13.8 times fewer dofs, respectively. This illustrates the higher-order behavior of a DEM element
with an increasing value of nE . Also for Pe=103, a relative error equal to 0.1% can be achieved
by the DEM elements Q−9−2+, Q−13−3+ and Q−17−4+ using approximately 4.75, 14
and 15.1 times fewer dofs than by the Galerkin Q2, Q3 and Q4 elements, respectively. More
illustrative than the relative errors reported in Tables XIV and XV are the plots of nodal values of
the computed solutions displayed in Figure 9. Whereas even the relatively high-order Q3 solution

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 81:604–636
DOI: 10.1002/nme



630 C. FARHAT, I. KALASHNIKOVA AND R. TEZAUR

Table XIV. Inhomogeneous boundary layer problem of Section 8.3 with Pe�103: relative
errors in the L2(�) broken norm for uniform discretizations with approximately 1600 dofs

(non-stabilized Galerkin vs DEM elements).

Pe �/� Q2 Q−9−2+ Q3 Q−13−3+ Q4 Q−17−4+

102 0 1.14×10−2 2.52×10−5 6.02×10−3 1.11×10−6 2.36×10−3 1.09×10−7

1
4 9.23×10−4 1.26×10−4 3.75×10−4 1.51×10−5 1.11×10−4 4.50×10−8

1
2 1.14×10−2 2.40×10−5 6.02×10−3 1.11×10−6 2.36×10−3 4.33×10−7

103 0 8.72×10−2 1.39×10−4 6.92×10−2 1.01×10−5 5.22×10−2 3.79×10−6

1
4 4.38×10−3 5.87×10−5 3.36×10−3 1.90×10−5 2.47×10−3 2.00×10−6

1
2 8.72×10−2 1.07×10−4 6.92×10−2 1.01×10−5 5.22×10−2 7.95×10−6

Table XV. Inhomogeneous boundary layer problem of Section 8.3 with Pe=106: relative errors in the
L2(�) broken norm for uniform discretizations with approximately 1600 dofs (non-stabilized Galerkin vs

advection-limited DEM elements).

Pe �/� Q2 Q−9−2+ Q3 Q−13−3+ Q4 Q−17−4+

106 0 1.20 3.12×10−4 3.81×10−1 8.12×10−5 3.72×10−1 5.12×10−4

1
4 1.52 4.62×10−5 1.49 1.05×10−5 7.05×10−1 1.36×10−6

1
2 1.20 1.87×10−5 3.81×10−1 1.45×10−5 3.72×10−1 1.03×10−4

Table XVI. Convergence rates (Section 8.3, �=�/4).

Convergence rate Required # dofs to achieve
Element (Pe=102) a relative error of 10−3 (Pe=103)

Q2 2.79 14700
Q−9−2+ 2.91 3100
Q3 3.66 8000
Q−13−3+ 3.97 570
Q4 4.65 3400
Q−17−4+ 4.95 225

is shown to exhibit spurious oscillations, the DEM Q−13−3+ solution is shown to be virtually
indistinguishable from the exact solution in the entire computational domain.

8.4. Double ramp problem on an L–shaped domain

Finally, a variant of the double ramp problem used in [37] for testing stabilized finite elements
with mesh refinement is considered here. The domain is an L-shaped region �=[(0,1)×
(0,1)]\[(0,0.5)×(0.5,1)] (Figure 10). The Péclet number is set to Pe=103 and the source term
of the BVP (1) is set to f =1. Homogeneous Dirichlet boundary conditions are prescribed on all
six sides of �. The advection direction is set to �=0 and therefore the flow moves from left to
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Figure 9. Nodal values of approximated and exact solutions of the non-homogeneous boundary layer
problem of Section 8.3 with �=0, 1600 dofs and Pe=103. (a) Q3; (b) Q−13−3+; and (c) exact.

right. The solution of this problem, which is not known analytically, is known however to exhibit
a strong outflow boundary layer along the line x=1, two crosswind boundary layers along y=0
and y=1, and a crosswind internal layer along y=0.5 (Figure 11). The nature of this solution is
therefore different from that of the BVPs considered in the three previous sections. Indeed, this
problem is one of the most stringent benchmark problems for advection–diffusion.

A reference solution for this problem that is free from any spurious oscillation is computed on
a uniform mesh with 43 200 elements. The performance results of computations on unstructured
meshes are reported in Table XVII. They reveal that for this problem, the DGM elements provide
only a moderate improvement over the Galerkin elements. However, the DEM elements provide a
dramatic improvement of orders of magnitude in both accuracy and computational efficiency.

Figures 12–15 show four cross-sections of the nodal values of the numerical solutions computed
using the DGM and DEM elements and their standard Galerkin counterparts. The Galerkin solu-
tions exhibit noticeable oscillations in the y=const plane near the outflow boundary. These are
even present in the higher-order Q4 solution. On the other hand, no oscillation is seen in the
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Figure 10. L-shaped domain (Section 8.4).
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Figure 11. Nodal values of approximated and exact solutions of the homogeneous boundary layer problem
of Section 8.4 with Pe=103 and 1200 elements. (a) Q3; (b) Q−12−3; and (c) Q−13−3+.

computed DGM and DEM solutions. The DGM elements appear to experience a small numer-
ical difficulty but only along the location of the crosswind internal layer (line y=0.5) (Figure
13(b)). The polynomial component of the DEM elements appears to resolve this issue completely
(Figure 13(c)).

Nodal values of the computed Q3, Q−12−3 and Q−13−3+ solutions are plotted on the entire
domain in Figure 11. Again, oscillations are evident in the Galerkin solutions. On the other hand,
the DGM and DEM solutions are free from any spurious oscillation.

9. CONCLUSIONS

In this paper, the discontinuous enrichment method (DEM) proposed in [7] for the solution of the
two-dimensional advection–diffusion equation is extended to higher-order quadrilateral elements
and problems discretized on unstructured meshes. Appropriate Lagrange multiplier approximations
on a mesh of quadrilateral elements are designed and the issue of potential redundancy in these
approximations in the context of higher-order elements is illuminated and addressed. Three new
higher-order pure discontinuous Galerkin method (DGM) quadrilateral elements are constructed
and denoted by Q−8−2, Q−12−3 and Q−16−4. The approximation space Vh of these
elements contains only the exponential enrichment field VE , intended to capture the rapidly
varying ‘fine’ scale that is typically present in the exact solution of advection–diffusion BVPs.
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Table XVII. Double ramp problem of Section 8.4: relative errors in the L2(�) broken norm (Pe=103,
uniform discretizations, non-stabilized Galerkin vs DGM and DEM elements).

Number of elements Q2 Q−8−2 Q−9−2+

300 2.72×10−1 1.19×10−1 4.11×10−2

1200 1.23×10−1 6.07×10−2 8.47×10−3

4800 5.26×10−2 2.81×10−2 1.65×10−3

10 800 2.92×10−2 1.54×10−2 7.43×10−4

Number of elements Q3 Q−12−3 Q−13−3+
300 1.49×10−1 1.11×10−1 2.80×10−2

1200 6.57×10−2 5.00×10−2 4.71×10−3

4800 2.36×10−2 1.02×10−2 8.24×10−4

10 800 1.08×10−2 4.54×10−3 9.75×10−5

Number of elements Q4 Q−16−4 Q−17−4+
300 9.58×10−2 8.32×10−2 2.16×10−2

1200 3.78×10−2 1.33×10−2 2.94×10−3

4800 1.03×10−2 9.17×10−3 1.26×10−4

10 800 3.70×10−3 4.92×10−4 2.12×10−5
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Figure 12. Nodal values of approximated solutions of the L-shaped domain problem of Section 8.4 along
the line y=0.25 with 1200 elements. (a) Galerkin; (b) DGM; and (c) DEM.

For the finite element solution of inhomogeneous problems, higher-order true DEM elements
Q−9−2+, Q−13−3+ and Q−17−4+ are proposed. The approximation spaces of these elements
are the direct sum of VE and VP , where VP is the polynomial field of the standard Galerkin
bilinear quadrilateral element Q1. Special advection-limited variants of these elements, denoted
by Q−nE −n� and Q−nE −n�+, are proposed for the solution of problems in the particularly
high Péclet number regime (Pe>103).

The discontinuous nature of the DGM and DEM approximations enables the static condensation
of the enrichment dofs prior to the assembly of the finite element matrices, making the Q−8−2,
Q−12−3 and Q−16−4 pure DGM elements (and similarly the Q−9−2+, Q−13−3+ and
Q−17−4+ true DEM elements) of comparable computational complexity to the standard Galerkin
Q2, Q3 and Q4 elements. It is also found that the aforementioned DGM and DEM elements exhibit
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Figure 13. Nodal values of approximated solutions of the L-shaped domain problem of Section 8.4 along
the line y=0.5 with 1200 elements. (a) Galerkin; (b) DGM; and (c) DEM.
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Figure 14. Nodal values of approximated solutions of the L-shaped domain problem of Section 8.4 along
the line x=0.5 using 1200 elements. (a) Galerkin; (b) DGM; and (c) DEM.
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Figure 15. Nodal values of approximated solutions of the L-shaped domain problem of Section 8.4 along
the line x=0.95 using 1200 elements. (a) Galerkin; (b) DGM; and (c) DEM.

quadratic, quartic and quintic convergence rates, respectively, on both structured and unstructured
grids; therefore, they are also comparable to the aforementioned standard Galerkin counterparts
from the convergence order viewpoint.
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The proposed DGM and DEM elements are tested on four benchmark problems: a homogeneous
boundary layer problem whose exact solution is contained in the approximation spaceVE , a homo-
geneous boundary layer problem whose exact solution is not contained in VE , an inhomogeneous
two-scale BVP, and a double ramp problem on an L-shaped domain that exhibits outflow as well
as internal boundary layers. For all of these problems, it is found that the DEM elements outper-
form their standard Galerkin and stabilized Galerkin counterparts of comparable computational
complexity by at least one, and sometimes many orders of magnitude in relative error, on both
structured and unstructured meshes. For example, it is found that, for Pe=103, a constant relative
error of 0.1% can be achieved using discretizations by the Q−8−2 and Q−9−2+ elements using
4 to 5 times less dofs than by the standard Q2 element. Similarly, it is found that the Q−12−3 and
Q−13−3+ elements deliver the same accuracy as the Q3 element but using 14 to 15 times fewer
dofs. Most importantly, it is also found that for all considered benchmark problems, the DGM and
DEM solutions are almost completely oscillation-free, even in the very high Péclet number regime
where the standard higher-order Galerkin solutions are polluted by spurious oscillations. All these
results demonstrate the potential of DEM for realistic advection-dominated transport problems in
fluid mechanics.
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